Detecting Urban Transport Modes Using a Hybrid Knowledge Driven Framework from GPS Trajectory

نویسندگان

  • Rahul Deb Das
  • Stephan Winter
چکیده

Transport mode information is essential for understanding people’s movement behavior and travel demand estimation. Current approaches extract travel information once the travel is complete. Such approaches are limited in terms of generating just-in-time information for a number of mobility based applications, e.g., real time mode specific patronage estimation. In order to detect the transport modalities from GPS trajectories, various machine learning approaches have already been explored. However, the majority of them produce only a single conclusion from a given set of evidences, ignoring the uncertainty of any mode classification. Also, the existing machine learning approaches fall short in explaining their reasoning scheme. In contrast, a fuzzy expert system can explain its reasoning scheme in a human readable format along with a provision of inferring different outcome possibilities, but lacks the adaptivity and learning ability of machine learning. In this paper, a novel hybrid knowledge driven framework is developed by integrating a fuzzy logic and a neural network to complement each other’s limitations. Thus the aim of this paper is to automate the tuning process in order to generate an intelligent hybrid model that can perform effectively in near-real time mode detection using GPS trajectory. Tests demonstrate that a hybrid knowledge driven model works better than a purely knowledge driven model and at per the machine learning models in the context of transport mode detection.

منابع مشابه

GPS Jamming Detection in UAV Navigation Using Visual Odometry and HOD Trajectory Descriptor

Auto-navigating of unmanned aerial vehicles (UAV) in the outdoor environment is performed by using the Global positioning system (GPS) receiver. The power of the GPS signal on the earth surface is very low. This can affect the performance of GPS receivers in the environments contaminated with the other source of radio frequency interference (RFI). GPS jamming and spoofing are the most serious a...

متن کامل

TrajectoryNet: an embedded GPS trajectory representation for point-based classification using recurrent neural networks

Understanding and discovering knowledge from GPS (Global Positioning System) traces of human activities is an essential topic in mobility-based urban computing. We propose TrajectoryNet—a neural network architecture for point-based trajectory classi€cation to infer real world human transportation modes from GPS traces. To overcome the challenge of capturing the underlying latent factors in the ...

متن کامل

Analyzing the performance of different machine learning methods in determining the transportation mode using trajectory data

With the widespread advent of the smart phones equipping with Global Positioning System (GPS), a huge volume of users’ trajectory data was generated. To facilitate urban management and present appropriate services to users, studying these data was raised as a widespread research filed and has been developing since then. In this research, the transportation mode of users’ trajectories was identi...

متن کامل

Analysis of human mobility patterns from GPS trajectories and contextual information

Human mobility is important for understanding the evolution of size and structure of urban areas, the spatial distribution of facilities, and the provision of transportation services. Until recently, exploring human mobility in detail was challenging because data collection methods consisted of cumbersome manual travel surveys, space-time diaries or interviews. The development of location-aware...

متن کامل

Understanding People Lifestyles: Construction of Urban Movement Knowledge Graph from GPS Trajectory

Technologies are increasingly taking advantage of the explosion in the amount of data generated by social multimedia (e.g., web searches, ad targeting, and urban computing). In this paper, we propose a multi-view learning framework for presenting the construction of a new urban movement knowledge graph, which could greatly facilitate the research domains mentioned above. In particular, by viewi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016